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ANALYSIS OF SIDEBAND SPECTRA FROM UNTAPERED
UNDULATOR USING ANALYTICAL TECHNIQUE*

HARUNORI TAKEDA, MS-E531
Los Alamos National Laboratory, Los Alamos. NM 87545

The sideband spectrum appearing in the free-electron laser is analyzed. For
an untapered undulator, we predict the wavelengths of local peaks arising from the
sidebands; they are compared with numerical simulations. In our analytical theory,
three laser-driving terms are derived: One term does not chirp in frequency, drives
a number of sidebands simultaneously, and is always the strongest term with a
fixed strength. The other two driving terins, which also drive multiple frequencies,
chirp to both directions from a resonant frequency. We assume that the sidebands
originate from a dipole oscillation of average electron energy where the average

energy oscillates with the synchrotron oscillation frequency.

1. Iatroduction

Sidebands reduce the extraction efficiency and the gain of a free-electron laser
(FEL) with a tapered undulator. On the other hand, the sidebands occurring in
an untapered FEL undulator increase the extraction efficiency and the gain. In
an oscillator xperiment, the laser light is amplified between two mirrors. In this
paper we discuss the spectral characteristics of sidebands occi. -ing in the untapered
undulator and the local peaks of the 'aser spectrum when new sidebands are excited
and their intensities are increased as the pass number of the laser radiation in the
cavity increases.

To explain the spectral characteristics of the sideband, we extend the multifre-
quency formulation of the free-clectron laser(1] by including a simple oscillator that
represents the sideband. The frequency of the oscillator is assumed equal to the

synchrotron oscillation frequency of the electrons in the ponderomotive potential

* Vvork performed under the auspices of the U.S. Dept. of Energy and supported
by the i1.S. Army Strategic Defense Commuaornd.



well. Using this theory, we derive the frequency separation of each sideband and a
relation hetween the spectral chirping of average intensity and the synchrotron fre-
quency. The spectral chirping can be expressed in terms with the undulator length
and the synchrotron length. We also show that the two sideband driving terms arise
from a single resonant frequency which splits in opposite directions.

To confirm the picture of sidebands obtained from the analytical study, we
simulated an FEL oscillator experiment using a one-dimensional FEL code, FELP,*
assuming thai no laser intensity is lost in the optical cavity. An untapered undu-
lator is placed at the center of the cavity. The laser in the multipass numerica!
simulation starts with noise characterized by wide bandwidth, random phase, and
random amplitude. The starting intensity is set such that it induces the synchrotron
oscillation with a period greater than the undulator length. Laser spectra are cal-
culated by taking snapshots at several pass numbers. Then, the local peaks of the

spectra are compared to the predicted peaks from the analytical expression.

2. Model of sideband

It is generally accepted that the sideband is driven by a periodic motion of
electrons in the bucket. The sideband appears in the laser spectrmin as an added
frequency in addition to the fundnmental frequency. To have gain at the sideband
frequency, the laser must be driven hy the transverse motion of electrons at that
frequency. Therefore, the transverse motion of the electrons must possess sideband
frequencies. The transverse velocity and the total eiectron energy are related by
3 = l%J (where a is the transverse dimenscionless vector potential of the feld).
When the electrons are localized and oscillate in the longitudinal phase space, the
transverse motion resulting from the oscillation drives the .aser field at the cotre-

sponding sideband frequencies.

* FELP is n one-dimensional free-electron luser code writien by B. ). McVey,
MS-E531, Los Alamos National Laboratory, Los Alamos, NM 87545,



When an electron beam with a small energy spread enters an undulator, the
electrons see a number of buckets: each bucket cerresponds to a bucket of a par-
ticular laser frequency and phase. However, the energy transfer from the electrons
to the laser is maximum where the peak gain is equal to the electron-beam energy.
Also, a laser field with shorter wavelength Liaving a negative gain at the electron-
beam energy (as created by spontaneous emiission or noise) gives energy o the
electron beam. Then the energy is transferred from a short wavelength to a long
fundamental wavelength.

Because the energy at which peak gain occurs for the fundamental is higher
than the beam energy, the averags energy of the electrons is higher than the reso-
nant energy of that bucket. The average energy of the electrons oscillates around
the resonant particle of the bucket. Tlis oscillation frequency is approximately the
synchrotron frequency with respect to that bucket. As the amiplitude of the funda-
mental increases and sidebands are generated at longer wavelengths, lower resonant
energies of corresponding buckets from sidebands reduce the oscillation cente: of
the average electron energy, and a further detrapping from the bucket of the fun-
damental occurs. This action causes a net positive gain and increased efliciency for
an untapered undulator.

The energy of the jth electron as a function of time can be approximated as
Y, = Yo + b cos(wit 4 de) (1)

wliere w, is the average energy oscillation frequency that is approximately the syn-
chrotron frequency, v is the average energy of the oscillation center, and 4, is tue
average energy oscillation amplitude, The phase angle ¢, of the average energy
oscillation at the undulator entrance is left unknown; assuming $,. - 0 appears
reasonable, but it violates the observed tendency that the intensity-weighted wave-
length »f the spectrum chirps longer because of the sideband.

Restating the assumption of Fq. (1): Fach electron energy is replaced by
an average energy that oscillates around a sideband-modified resonant encrgy 0.

Although the sideband-madified resonant energy is not well defined, it is d stermined



from the emerging buckets resulting from the presence of sidebands. The phase
distribution of the electrons contributes gain to both fundamental and sidchands,
but it does not directly drive the sidebands.

Substituting Eq. (1) into 3, = L:—l ., and assuming that the ratio of bucket
height to the resonant energy is small, one obtains the following transverse electron

velority modulated by the synchrotron oscillation:

COS(kw}j:Ct + ¢0)
o [1 + 12 cos(w,t + ¢.)]

2
|

v [1 - :—" cos(w,t + m] cos(kuf. ct + ¢o)
0

= S {2eJ(N¢+¢o) b lw—wat-datdo) _ Eej[<w+w.n+¢.+¢o]} +C.C. L (2)
449 Yo Yo
where the electron transverse frequency is w = ck,J,, and C.C'. means complex

conjugate.

Equation (2) states that the electron transverse motion, in fact, has +w,
modulated frequency components. The radiation field is driven by the transverse
electron current, and two sidebands are driven by the transverse motion. The
streugth of each comnonent is measured by the relative energy ,‘77;'-‘; A sideband

component is weaker than the fundamental by a factor , which is, at most, a

Qe
2v0
gain bandwidth of the undulator.

3. Single frequency component of sectral equation for an untapered un-

dulator

A single frequency component of the field is obtained by integrating hoth sides

of the specirally decomposed laser equation (derived in Kef. 1), with respect to =

iw, r

after multiplying by « on both sides of the equation. The ith component in the

left-hand side (LHS) of the spectrally decomposed laser equation is
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We include the sideband in the laser equation as follows: using the following rela-

tions that relate the variables + and z; to the variables ¢ and z,

X
T 1—/32
and
b=ty !
) T,
C 1—‘3:

we substitute the second equation above into Eq. (1), and using z;; = T—GLJ,_— , the
spectraily decomposed field equation can be approximated to first order in 179* The
ith laser wave-number coniponent in the right-hand side (RHS) of the spectrally

decomposed laser equalion is then given by (see Ref. 1 for definition of terms)

Z 6(z1 — -'-'1_; Gka -a/ et (Wi —whalT 40 CM"fko
r (1- ﬁ:j

~y o we LS T wi—ky < T .0
+FZ 6'("‘__‘1 ) e ( ‘ '-gﬁ'_’) dr ¢ TG
= (1= 2,10

-y fasn) ()5 s [ (e )y ()
ka

v=11 1"ﬂu ‘70

Qw

]

P Z Z 6( l_‘-l) (‘76,}')Aﬂ ei'(,W|_kwréﬁ:—J+ur;?'_;)rd1- e—i(m)(k“.~u%i)Liu¢.

0 5 (1 =B:)0 \ 27
+H.C. (4)

Ay

multip'ied by a constant K —l_—;z; (The abbreviation H.C. stands for Hermitian

conjugate.) In the RHS of the spectral field equation, the taper-dependent term
wé

¢ "*w 4, can be extracted from the integral.

After performing the r integration from 0 to a laser pulse slippage time ry

across Llie undulator, we obtain the ith component of the laser equation:
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The first and second terms on the RHS are present even without synchrotron
oscillation. The third and fourth terms, which have a multiplier of synchrotron
oscillation, represent the effect resulting from the synchrotron oscillation.

We multiply by e *®* and separate real and imaginary parts. The real part

gives an equation for phase:
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The imaginary part gives an amplitude equation:
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In both the amplitude and the phase equation, there are two types of frequency-
dependent terms. They are
siné;,

_‘F_' 5"1 X,, + ¢ ) and COS( iv + ¢ )s

where X;, and é;, are given by

b |



and

where v =0, +1, and -1 . (9)

The w, and w,’ are given as

ky3:c , W,
wp = and w, =

—l‘sz 1_/37.

(10)

The second expression of Eq. (10) relates the periodic oscillation frequency
w,, such as the synchrotron frequency, to the corresponding laser frequency shift
w,’. We note that when the laser frequency w; is equal to the w,, then ’—1’6'—%11 takes
its maximum value in the absence of the sideband and, thus, corresponds to the

“resonance condition.” To show this, we solve w; = wp, by utilizing the relation

k]
1_1‘3. = (lrf;),l We obtain

B:  _, B+ 2

=k, by ——— 1

When a dominant bucket is formed at high laser intensity, we may assume
that the laser phase angle changes slowly. One of the effects of the sideband is that
it artificially shifts the bHucket with respect to phase, according to the amount of

the sideband frequency shift. The spectral function in the driving termn is modified

by the sideband with vw):

sin 2 [wi — (wp — vw, )]

T (12)
2 wi = (wp — vw))]
The shift of the spectral function caused by the sideband is
TL 1 Lw Wy Lw Lw
—_— —_ — —_— — (7. = = . 13
2 we 2cd, \=8:) 1 -8, "ﬂzLaync Laync " (13)

This equation states that when the frequency chirp caused by the sideband is

more than half the laser bandwidth (synchrotron period <0 undulator length), the

8



driving term passes a node and starts driving the next bandwidth. The strength
of the spectzal function becomes maximum at every m. When the sidebands are
driven by this chirping mechanisin, a new sideband is enhanced when the chirping
as given by Eq. (13) passes each node.

The wavelength chirping of each sideband with respect to the fundamental
can be obtained as follows: Using A\ = Q;Tﬁ-l,\w, the second part of E¢. (10)

becomes
Aw Aw 2mc

—w, = .
AL Laync

AL
Taking the .atio to wp, converting to wavelengih using Eq. (13), and not-

w; = Awp ~ (14)

ing that the driving tern has nodes at every n in Awg, we obtain the sideband

separations as

A Aw .
L+ m where m:integer > 1 . (15)
’\L Lavnc

We have included the factor m to represent the mth sideband. For example, in the
Los Alamos experiment with A, = 2.7 cm and L,yne = 1| m, the quantity A—AAI:“ is
calculated to be 0.3 jun, which is in good agreement with the numerical simulation.

In addition to the sidebands that chirp frcm the resonant frequency as de-
scribed above, there appears another class of sidebands. In the following sections,
we study the individual driving terms clcsely and identify the different classes of

sidebands,

4. Driving terms neglecting the effect from the electron bunching

Neglecting the common multiplicative factors, the driving terms of Eq. (8)

from the jth particle by the undulator field can be written as

sinb,_y (16
5 ' )

v

iné; . i
F = sin(Xio + ) 00 _ (.—”’—) sin (X + 66 — 1 — ve)
bio 270

We note that kw—lj‘sﬁ—. + ¢, isequal to (kp + kuw)z —wrt+ ¢i. A negative sign in F ¢

is included in Eq. (25). The factor n = v=2 1_23” and its ratio to electron phase

9



are relatively small for a 3 cm period and 1 m undulator:

ud 73 A
n& = Uk'-‘ =v = ~ i3%
kwl__‘ﬁ’: w Lsyn,c

Separating the terms within sin inte one term that includes the frequency and

another term that includes the phase ~ngle k,, T—§/3_ + ¢i, Eq. (16) is written as

F = sin (kw 4 + ¢:‘) cos 3w = wp)sin Fw =~ wp) — cos (k Ji + ¢;) sinrz (%(w ~ @)
_1321 F\Ww — wp)
+é ) cos { 2 [w — (wp — vw!)] + v} sin 2w — (wp — vw!)]
P /

3 [w - (wp —vw})]

(*L sm( J
27 _/B:.J
I )cos( i + i — ) sin {2 [w — (wp —vw})] + vée } sin B [w — (wp — vw)))
2 —/BZJ

Fw — (wp — vwt)]

(17)

For an ideal untapered undulator, the resonant angle is zero. We make the
assulnption that the resonant angle kw# + ¢; is equal to zero for all huckets,
including those arising froni the sidebands. This assumption is reasonable because

the undulator taper determines the resonant angle. With this assumption, a sum

[Eon(et )

The driving expression is further simplified to

over particles is zero:

5; sin? 2 (w — wy) b 4,
r~- kw ) r 2 £ +(_) (ku' . + ¢ — )
cos ( T + @, ‘2‘(’-‘-’ " o) 20 cos (=3, ¢ n

y sin {3 [w — (wp — vw))] + v } sin 2w — (wp — vw)))

3 [w = (wp ~ vw})]

(18)

Two driving terms are characterized by the presence or absence of vw). The first
term in Eq. (18) has no dependence on w!, For the second term, the spectrum is

displaced hy w), but it maintains its spectral shape. Also, the amplitude of this

10



term depends on the ammplitude of the average energy oscillation, which is expected
to be, at most, a relative half-energy spread of the dominant hucket.

Although the initial phase ¢, is determined by wheu the electrens effectively
start bunching along the undulator, we can understand the sideband chirping hetter
by approximating ¢, = m. By doing so, the phase of exciled waves from the first
“stationary terin” and from the second “chirping term” are cqual at the limit w), = 0.
Both terms have the same spectral shape with its center coinciding at the limit
w, = 0 at wavelength 10.14 um as shown in Fig. 1. The clirping term shown as a
dashed line. A4 this limit w} = 0, nodes and peaks for both specira coincide.

The chirping term with v = 1 chirps to a longer wavelength from the center,
and it enhances the ainplitudes created by the stationary term as its peak sweeps
over the local peaks of the stationary spectrum. The chirping term with v = —1
chirps to a shorter wavelength from the center, and it cancels the amplitudes created
by the stationary termm because the phase of the stationary term is opposite to the
phase of the chirpiug term. The stationary terim drives waves at opposite signs with
respect Lo center,

The stationary term drives sidebands strongly at local peaks that locate sym-
metrically froin the resonant wavelengthm. This class of sidebands developes in-
depenciently from the synchrotron oscillation. As the total laser power increases,
a number of sidebands appears, even when the ratio of undulator length to syn-
chrotron length is about one or two.

The chirping spectruin not only enhances the waves excited by the stationary
spectrum but also creates its own local peaks. The frequency of sidebands driven
by the chirping terms degenerates from the main peaks of the stationary terin. The
amount of chirp is determined by Iq (13). The peak of the laser amplitude spec-
trum chirps to a longer wavelength according to the peak of the chirping spectrum.

Figure 2 shows the driver [' as a function of synchrotron length L,y,.. As
the chirping term chirps in the wavelength according to the syuchrotron length,
its peak traces the spectrum of the stationary term. The etlect of the sideband

gradually increases and peaks at 2L,,, - L,,.., when the intensity becomes larger,



the stationary driving term reduces and becomes zero at Lyi; = Lyync. Successive

peaks are at L,i; = L,ync (n + ;) The displacement of wavelength cansed by

chirping for a sideband from A, defined as 2‘%:, is obtained by using IEq. (14):

6’\Ln'dc Aw T
= = — 19
’\P Laync N , ( )

wherex = L,/ L,ync and N is the number of periods in an undulator. The [ractional

wavelength separation between successive peaks is A, /L,yn.. Because the spectrum

z . "
has a shape "“= £, the wavelength of successive local peaks of the driver can he

obtained by solving £ — tanz = 0. Definiug Ao as the resonant wavelength, the

relation between z and laser waveleagth Ay is given by

ALo

By
1+ z—'“—"wa

AL = , (20)

8. Comparison of local spectral peaks between numerical simulation and

the theory for an untapered undulator

In the previous section, we have derived several characteristics of the side-
band “or an untapered undulator. We now compare the local peaks of the spectra
obtained from the numerical simulation using FELP and the local peaks calculated
from the analytical expression. We simuiate the multipass process using the code
FELP with the assumptions: (1) cavity loss is set Lo zero, (2) the electric ficld is
driven with random noise at the first pass, and (3) the assumed undulator is of
the Halbacli type.[2] We run the code FELP under the periodic mode where the
houndary conditions for both the clectron I'eami and the laser are assuim=d periodic,
The initial conditions are shown in the Table 1. The resonant waveleugth A, after

including the eflect of Gaussian-wave, is calculated to be 10.14 pm.

6. Wavelength shift of the spectrum for the chirping term

The second part of Eq. (10), which gives the laser frequency shift of the

12



driving spectra, can be rewritten in terms with wavelength using Eq. (11) as

y_ Aw 2mc
= ’
’ ’\L Laync

w

(21)

where Ay and A, are laser and undulator wavelengths. The laser wavelength efter

the shift is then expressed as

1 1

— = AL

(1-vee)  (1-vigme)

/\nch = ’\L

where N is the number of periods in the undulator (= Eﬁ‘) and the index v can
be either +1 or —1. With respect to resonant laser wavelength A\ = 10.14 g,
the wavelength shift §\p is approximately linear in f‘f‘"‘c—, as shown in Fig. 3. For
example, the wavelength shifts by 0.3 pum at L,yne = Luyig-

As the power present in the FEL cavity increases, the synchrotron length
decreases. Assuming a no-loss cavity, Fig. 4 shows the number of synchrotron
periods in an undulator length plotted as a function of power. At 1 GW power,
about two synchrotron oscillations take place in the undulator. For this no-loss
system, it takes about 100 passes to reach 5 GW with the FELP code. The pass
number is plotted against the power in Fig. 5. The intensity was assumed to be 10*

W/cm? at the entrance to the undulator.

7. The silebands by the stationary term and by the chirping term

In the following argument, we ignore the dependence on the electron distri-
bution and the laser phase because they are not obtainable analytically in terms of
stiiiple expressious. However, they affect the relative strength ' the driving terms;
that is, they enliwuce the chirping sideband drivers.

In the numerical simulation, we take snapshots of the laser electric field spec-
trum at Pass 1, Pass 7, Pass 20, Pass 100, and Pass 200. The growth of the
sidebands is associated with the synchrotron length and the wavelength chirp. The
laser spectruin at Pass 1 is shown in Fig. 6. The optical power is 1.572 x 10* W, and

gain is about 100. The synchrotron length is approximately 1997 ¢, and [f‘.‘iv-:f is

13



0.1. The wavelength shift is 0.014 um. The peak of electric field amplitude is at
10.18 um, the sideband with a 7 pliase shift is seen at 10.10 zan. Although it is not
clear, we also see that the sideband near 10.33 um is rising. At this laser power,
three driving spectra are well overlapped, as was shown in Fig. 1.

The laser spectrum at Pass 7 is shown in IFig. 7. The optical power is 6.57 x
107 W, and the gain per pass is ahout 30%. The ratio 'LE.E,"..‘: is 0.997. It has a
peak at 10.2 um. We observe local peaks at 10.34 um and at 10.48 um. Also
there is & weak local peak at 10.05 um. To interpret these local peaks from FELP
simulation, we calculated the local peaks of the stationary term and the chirping
terms. Figure 8 compares the positions of the local peaks: from the stationary
spectrum (Case 1), from the spectrum chirping to longer wavelength (Cuase 2),
from the spectrum chirping to shorter wavelength (Case 3), and from the FELP
calculation (Case 4). The resonant wavelength is labeled by Cp, the centers of
chirping spectra are labeled by C. The numerical resolution is shown as horizontal
arrows at points for Case 4. All the local peaks of FELP lie on one or anotlier
of the predictions from the driving terms, showing that the weak local peak at
10.05 pm is dri-en by the term that chirps to shorter wavelength. Other local peaks
from FELP coincide with the local peaks of the driving terms. Because they are
approximately at the same wavelengths, we cannot identify which term is driving
the peaks. We note that several sidebands are already observed ut synchrotron
length approximately equal to the undulator length.

The chirving term at Paas 20 chirped AN := 0.239 g and AN - -0.228 pm,
The stationary term and the term chirped to longer wavelength are shown in Fig, 9;
the stationary term nnd the term chirped to sherter wuvelength are shown in Fig. 10,
The laser amplitude spectrum has a nnmber of local peaks, ns shown in Fig, 11,
The optical power is 5.4 x 10" W, and the guir per pass is about 9.0%. The ratio
,{i‘i—':: is 1.69 and has n peak at 10.48 ;un. We observe a vamber of local penks.
All the local peaks from FELP are shown in Fig. 12 as Case 4 together with the
local peaks from the stationary term and the chirping terms, Figure 12 shows (hat

the stationary term explnins all of the peaks, but the term chirping to o longer



wavelength predicts well near 10.2 ym. We note that the chirped center of the
term to longer wavelength is about 10.1 gum, and this is approximately close to the
weighted center of the FELP spectrumn.

The chirping term at Pass 100 chirped AN = 0.436 pm, and AN = --0.402 pm.
The stationary term and the term chirped to a longer wavelengih are shown in
Fig. 13; the stationary term and the term chirped to a shorter wavelength are
shown in Fig. 14. The laser amplitude spectrum developed more local peaks, as
shown in Fig. 15. The optical power is 5.54 x 10° W, and the gain per pass is
about 1.17%. The ratio -EL:‘”:!“‘:- is 3.02. TFigure 15 has two dominant peaks: at
10.48 pum and at 10.93 pmn. Figure 16 shows all the local peaks from FELP and
the predicted positions of local peaks. At the short wavelength near 9.6 um, the
waves wi.h phase shifted by 7 are driven either by the stationary term: or by the
term chirped to a shorter wavclength. At the local peaks with a long wavelength
near 11.5 pym, the local peaks by FELP can be explained with the term chirped to
a longer wavelength. We also notice that the center of the term chirped to a longer
wavelength is at 10.58 um, which is approximately at the weighted center of the
electric-field =pectrum.

At Pass 200, the chirping term chirped by AN = 0.540 um and AN =
~0.488 pm. The stationary term and the term chirped to a louger wavelength
are shown in Fig. 17; the stationary term and the term chirped to a shorter wave-
length are shown in Fig. 18. The spectrum of laser amplitude is richer in structure,
as shown in Fig. 19. The optical power is 1.24 x 10'% W, and the gain per pass is
about 0.57%. The ratio lf‘.lv‘:: is 3.70. The major peaks are near 1).68 jom, which
is the center of the chirping term to a longer waveiength. Figure 20 shows all the
local peaks from FELF and the predicted positions of ihe local peaks. At ‘he short
wavelength near 9.6 jan, either the stationary term or the chirped term to n longer
wavelength explains the FELP data. Near the major peaks, the stationary term
predicts the local peaks. At the longer wavelength limit near 11.5 g, the term

chirped to a longer wavelength appears matched to the FELP data,



8. Conclusion

The analytical theory predicts that the driving terins of sidebands generated
in the untapered undulator are classified into two categories: (1) the stationary term
that is present even in the absence of synchrotron oscillations and (2) the chirping
terms that are driven by the synchrotron oscillations. The relative wavelength
separation of the sidebands is determined by the ratio of the undul..tor wavelength
to the synchirotron length for both types of sidebands. The frequencies of the
chirping terms degenerate from the stationary terin in opposite directions from the
resonant frequency as the intensity of the laser increases. The sidehband spectrum at
a particular laser intensity is a result of a superposition of stationary and chirping
stdeband drivers.

The numerical simulution of sidebands agreed well with the analytical predic-
tion of the local peaks of the spectruni. In the numerical sinulation, laser spectra
are calculated by taking snapshots at nass numbers up to 200. For each snapshot,
we calculated the synchrotron iength and the frequency shift of the driving terms.
We calculated all the local peaks as predicted by the three driving terms at each
intensity. We then compared those peaks with the local peaks obtained [rom the
numerical simulation. For all the passes wlere snapshots were taken, they agreed

well.
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Figure Cnptlons

Fig. 1. The spectral shapes of the stationary term and the chirping term are the sane,

and the center coincides at w, 0.

16



Fig. 2. The stationary driving term is periodic as a function of #‘—
aync

Fig. 3. The wavelength chirp of the chirping term is proportional to the factor Léi‘l-

Fig. 4. The inverse of the synchrotron period is shown as a function of laser power in a

no-loss cavity.
Fig. 5. The pass number is shown as a function of laser power in a no-loss cavity.

Fig. 6. The laser spectrum at Pass 1.

Fig.

-1

The laser spectrum at Pass 7 shows that sidebands start appearing.

Fig. 8. The local peaks of the stationary driver and the chirping drivers are compared

with a numerical simulation (FELP) at Pass 7.

Fig. 9. The term chirped to a longer wavelength is shown with respect to the stationary

term at Pass 20.

Fig. 10. The term chirped to a shorter wavelength is shown with respect to the stationary

term at Pass 20.
Fig. 1. The laser spectrum at Pass 20 shows a number of sidebhands.

Fig. 12. At Pass 20, the local sideband peaks from FELP simulation can be explained by

the stationary term.

Fig. 13, The term chirped to a longer wavelength is shown with respect to the stationary

term at Pass 100,

Fig. 11, The term chirped to a shorter wavelength is shown with respect to the stationary

term at Pass 100,

Fig. 15. The laser spectrinn shows a number of sidebands at. Pasa 100.
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Fig. 16. The loca! peaks of laser spectrum from numerical simulation (FELP) are

predicted from tlie local peaks of three driving terins at Pass 100.

Fig. 17. The term chirped to a longer wavelength is shown with respect to the stationary

term at PPass 200.

Fig. 18. The term chirped to a shorter wavelength is shown with respect to the stationary

term at Pass 200.
Fig. 19. The laser spectrum at Pass 200.

Fig. 20. At Pass 200, the term chirped to a longer wavelength explains the long wavelength
end of the FELP local peaks. At the short wavelen “h end, either the stationary or the

term chirped to a shorter wavelength explains the numerical simulation,

Table 1

Electroan-beam peak current 150 A
Electron-beam energy (v -- ;;E-;) 4.18
Unduiator fleld 3 kG
Undulator length 200 cm
Undulator wavelength 2.73 cm
Rayleigh range 49.5 cm
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